Research Institute of Agricultural Engineering Prague – Czech Republic

Miroslav Češpiva

The Department of Agroecology

Reduction of ammonia concentration in intensive animals breeding by biotechnological agents.

Large farms with high concenntration of animals.

- 1,4 million cattle
- 1,7 million pigs
- 21,5 million poultry

1999: The Gothenburg protocol

obliged the Czech Republic to reduce the ammonia emissions from livestock housing by 20% to the year 2010.

- Modifications of technologies
- Modifications of slurry and manure management
- Application of biotechnological agents

The biotechnological agents

- Agents drafted on the principle of adsorption
- Agents utilizing specific ability to bind chemically certain emitted gaseous (liquid) compound
- Agents utilizing enzymatic activity
- Agents acting by odours overlap
- Biological agents

They can be added to a feeding, to a drinking water or they can be applied to the manure.

The database of verified agents

The assignment of our authorized laboratory:

to confirm the effectiveness of agents before recording into the database of verified agents

The measurement of ammonia emissions

from the housing with applied agent

X

from the identical housing without agent

The methodology of ammonia emission measurement:

$$m = c \cdot \Phi$$

$$m = c \cdot \Phi$$

$$m = emission mass flow (mg.s-1)$$

$$c = concentration (mg.m-3)$$

$$\Phi = air flow rate (m3.s-1)$$

The specific production emission is calculated per year and animal.

SPE =
$$m \cdot 3600 \cdot 24 \cdot 365 \cdot n^{-1} \cdot 10^{-6}$$

SPE specific production emission (kg.year⁻¹.animal⁻¹)
m emission mass flow (mg.s⁻¹)
n number of animals

The measurement of ammonia concentration:

- The Photoacustic Multigas
 Monitor INNOVA 1312, 1412
- Multipoint Sampler INNOVA 1309
- High accuracy
- High stability
- High sampling rate
- Small dimensions
- Up to 12 sampling points

The measurement of ammonia concentration:

The sampling points are placed in the outlet air streams, usually in the outlet shafts with electric fans.

The 24-hour measurement is necessary because of including all activities during all the day (feeding, manipulating with manure etc.).

The air flow determination:

1. The controled ventilation

$$m=c$$
. Φ

$$\Phi = v.S$$

 Φ air flow rate (m³.s⁻¹)

v air velocity (m.s⁻¹)

S shaft cross-section (m²)

The automatic control of ventilation must be switch of during all the measurement.

The ventilation must be adjusted manually according to external temperature and the requirement of animals.

The air flow determination:

2. The naturally ventilated building

- CO₂ balance method
- Tracer gas measurement (SF₆, Krypton 85)

$$\Phi = m/c$$

Φ	air flow	$(m^3.s^{-1})$
m	mass flow rate	(kg.s ⁻¹)
С	concentration	(kg.m ⁻³)

The agent CARBOVET M applied in the pig housing:

Hall 9A (reference hall): 328 pigs, weight=70kg

Hall 10D with agent: 323 pigs, weight=82kg

Hall 9A (reference hall):

SPE $NH_3 = 3.25 \text{ kg.year}^{-1}.\text{animal}^{-1}$

Hall 10D with agent:

SPE $NH_3 = 2.48 \text{ kg.year}^{-1}.\text{animal}^{-1}$

The biotechnological agent decreased the ammonia emission

from the pig housing by 24%.

The agent Xylanase + Phytase applied in a broiler breeding:

Hall 1 (reference hall): 38 500 broilers, weight=1.07kg

Hall 1 (reference hall):

SPE $NH_3 = 0.099 \text{ kg.year}^{-1}.\text{animal}^{-1}$

Hall 2 with agent:

SPE $NH_3 = 0.074 \text{ kg.year}^{-1}.\text{animal}^{-1}$

The biotechnological agent decreased the ammonia emission from the broiler housing by 25%.

Conclusion

- The use of agents in the livestock production is one of the cheapest ways of decreasing the ammonia emissions, polluting our environment.
- The lower ammonia concentration inside the stable improves the welfare of animals (reduction of lung disease, reduction of mortality, increase of efficiency)
- The agents have another benefits for farmers

The list of the verified agents is available on our website

http://www.vuzt.cz/zp/pripravky.htm .

Supported by long time development project of Research Institute of Agricultural Engineering no. RO0618.

Thank you for your attention

Research Institute of Agricultural Engineering Prague – Czech Republic

miroslav.cespiva@vuzt.cz

COST Action CA16106

Ammonia and Greenhouse Gases Emissions from Animal Production Buildings (LIVAGE project)

Third Meeting of the COST LivAGE Project

Prague, March 1-2, 2018

PRELIMINARY PROGRAM

Meeting venue: Institute of Thermomechanics AS CR, v.v.i.

Dolejškova 1402/5 Prague 18200 Czech Republic

http://livage.it.cas.cz/im/im/

Thursday, March 1, 2018

8.00 - 9.00 REGISTRATION

09.00 – 12.30 MC meeting

Meeting agenda:

- Information from cost association.
- Status of the action (web, WGs, STSM, ITC conference, disseminations);
- Topics for discussion:
 - o STSM process and further action in 1st GP (till April 30, 2018);
 - ITC conference grant any needs/relocation;
 - TS (training schools) in GP 1 & future;
 - Our strategy & goals for GP1 and GP2. WG's goal and estimated outcomes (WG's leader working proposal and expected outcomes)
 - Dissemination strategy.

10:30 - 10:50 COFFEE BREAK

- Practical issues:
 - Decide the dates (possible program) for the next networking events (in GP1 & GP2) timeline for finalizing the date, locations; invitations issue in e-cost... all have to response in due time!
 - o A general rule on timing on invitation response
 - Budget & networking strategy
 - New members/partners
- OB

12.30- 13.30 LUNCH

13.30 – 15.30 Working groups meetings (in parallel)

15.30-15.45 COFFEE BREAK

15.45 – 17.45 Working groups meetings (in parallel)

19.00 - ... DINNER (please register in Doodle if you plan to join)

COST Action CA16106

Ammonia and Greenhouse Gases Emissions from Animal Production Buildings (LIVAGE project)

Friday, March 2, 2018

Open Conference

"2nd Conference on Ammonia and Greenhouse Gases Emissions from Animal Production Buildings"

08.00 - 08.30 REGISTRATION

08.30 - 10:00	KEYNOTE PRESENTATION moderator, Guoqiang Zhang			
08:30 – 08:55	Measurement of ammonia and greenhouse gas emissions from animal buildings, by Dr Ji-Qin Ni, PU, USA			
09:00 – 09:25	Toward a quantitative understanding of ammonia volatilization from animal slurry, by Dr Sasha D. Hafner, AU, Denmark			
09:30 – 10:00	Challenges of Inventory Preparation: Activity Data, Emission Factors and Models by Dr Barbara Amon, ATB, Germany			
10:00 – 10:30	COFFEE BREAK			
10:30 – 11:45 General session 1, Monitoring gaseous emissions from farming animal buildings Moderator Mélynda Hassouna				
10:30 – 10:50	Test protocol of Vera (Verification of Environmental Technologies for Agricultural Production) by Dr Nico Ogink, WUR, The Netherlands			
10:50 – 11:05	Application of the dual tracer ratio method to quantify emissions from naturally ventilated dairy housings, by Schrade et al.,			
11:05 – 11:20	Measurement and reporting of emission rates from intensive animal production units in Ireland and Australia, by Fogarty et al.			
11:20 – 11:35	Reduction of ammonia emissions from livestock housing by biotechnological agents, by Češpiva and Zabloudillová, Research Institute of Agricultural Engineering, Czech Republic			
11:35 – 11:45	Questions & Discussion			
11:45 – 14:10 General session 2, Reduction technologies of farming animal building emission Moderator: Kamila Kočí				
11:45 - 12:00	Agricultural emissions and their environmental impacts: going beyond the animal-building scale using life cycle assessment, by Michael Corson, France			
12:00 – 12:15	Feeding strategies aimed to reduce environmental impact in dairy ewes and cattle, by Marcello Mele, Italy			
12:15 – 12:30	Farm scale strategies for reducing the environmental footprint in intensive livestock production, Thomas Bartzanas, CERTH, Greece			

COST Action CA16106

Ammonia and Greenhouse Gases Emissions from Animal Production Buildings (LIVAGE project)

12:30 – 13:30	LUNCH BREAK			
13:30 – 13:45	Danish regulations on ammonia emission from animal housing and options to meet the requirements" by Bjarne Bjerg, University of Copenhagen, Denmark			
13:45 – 14:00	Integrated ventilation techniques and exhaust air purification for effective reduction of emission from farm animal houses, By Guoqiang Zhang, Aarhus University, Denmark			
14:00 - 14:10	Questions & Discussion			
14:10 – 16:00 General Session 3, Modelling ammonia and GHG emissions from animal buildings Moderator: André Aarnink, WUR, The Netherlands				
14:10 – 14:25	Development of ventilation based strategies to reduce ammonia emissions from pig fattening houses: an integrated approach, by Peter Demeyer, ILVO, Belgium (as continues of Session II)			
14:25 – 14:40	Modelling the transport of gases to improve emission measurements, by David Janke, ATB, Potsdam, Germany			
14:40 – 14:55	Modelling the effects of nutritional measures on ammonia emission from houses for growing pigs, by André Aarnink, Wageningen University and Research, the Netherlands			
14:55 – 15:25 <i>COFFEE BREAK</i>				
15:25 – 15:40	Development of VR simulator to educate environmental distribution of swine house such as gas, temperature, humidity, and dusts. By R.W. Kim and In-Bok Lee, SNU, Korea			
15:40 - 15:55	CFD methods to model emissions from livestock housing, by Bjerne Bjerg, University of Copenhagen, Denmark			
15:55 – 16:10	CFD modeling of livestock odor dispersion on complex topography, by In-Bok Lee and R.W. Kim, SNU, Korea			
16:10 – 16:20	Questions & discussion			
16:20 – 16:50 General DISCUSSIONS				